Body Weight Selection Affects Quantitative Genetic Correlated Responses in Gut Microbiota

Meng, H., Zhang, Y., L. Zhao, W. Zhao, C. He, C.F. Honaker, Z. Zhai, Z. Sun, P.B. Siegel (2014). “Body Weight Selection Affects Quantitative Genetic Correlated Responses in Gut Microbiota.” PLoS ONE 9(3): e89862. doi: 10.1371/journal.pone.0089862.  PMID: 24608294.  PMCID: PMC3946484



The abundance of gut microbiota can be viewed as a quantitative trait, which is affected by the genetics and environment of the host. To quantify the effects of host genetics, we calculated the heritability of abundance of specific microorganisms and genetic correlations among them in the gut microbiota of two lines of chickens maintained under the same husbandry and dietary regimes. The lines, which originated from a common founder population, had undergone >50 generations of selection for high (HW) or low (LW) 56-day body weight and now differ by more than 10-fold in body weight at selection age. We identified families of Paenibacillaceae, Streptococcaceae, Helicobacteraceae, and Burkholderiaceae that had moderate heritabilities. Although there were no obvious phenotypic correlations among gut microbiota, significant genetic correlations were observed. Moreover, the effects were modified by genetic selection for body weight, which altered the quantitative genetic background of the host. Heritabilities for Bacillaceae, Flavobacteriaceae, Helicobacteraceae, Comamonadaceae, Enterococcaceae, and Streptococcaceae were moderate in LW line and little to zero in the HW line. These results suggest that loci associated with these microbiota families, while exhibiting genetic variation in LW, have been fixed in HW line. Also, long term selection for body weight has altered the genetic correlations among gut microbiota. No microbiota families had significant heritabilities in both the LW and HW lines suggesting that the presence and/or absence of a particular microbiota family either has a strong growth promoting or inhibiting effect, but not both. These results demonstrate that the quantitative genetics of the host have considerable influence on the gut microbiota.